Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Virol ; 95(1): e28413, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2173199

RESUMEN

Accumulation of diverse mutations across the structural and nonstructural genes is leading to rapid evolution of SARS-CoV-2, altering its pathogenicity. We performed whole genome sequencing of 239 SARS-CoV-2 RNA samples collected from both adult and pediatric patients across eastern India (West Bengal), during the second pandemic wave in India (April-May 2021). In addition to several common spike mutations within the Delta variant, a unique constellation of eight co-appearing non-Spike mutations was identified, which revealed a high degree of positive mutual correlation. Our results also demonstrated the dynamics of SARS-CoV-2 variants among unvaccinated pediatric patients. 41.4% of our studied Delta strains harbored this signature set of eight co-appearing non-Spike mutations and phylogenetically out-clustered other Delta sub-lineages like 21J, 21A, or 21I. This is the first report from eastern India that portrayed a landscape of co-appearing mutations in the non-Spike proteins, which might have led to the evolution of a distinct Delta subcluster. Accumulation of such mutations in SARS-CoV-2 may lead to the emergence of "vaccine-evading variants." Hence, monitoring of such non-Spike mutations will be significant in the formulation of any future vaccines against those SARS-CoV-2 variants that might evade the current vaccine-induced immunity, among both the pediatric and adult populations.


Asunto(s)
COVID-19 , Adulto , Humanos , Niño , ARN Viral/genética , SARS-CoV-2/genética , Mutación , Glicoproteína de la Espiga del Coronavirus/genética
2.
J Infect Public Health ; 15(1): 42-50, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1549933

RESUMEN

BACKGROUND: Since its inception in late 2019, SARS-CoV-2 has been evolving continuously by procuring mutations, leading to emergence of numerous variants, causing second wave of pandemic in many countries including India in 2021. To control this pandemic continuous mutational surveillance and genomic epidemiology of circulating strains is very important to unveil the emergence of the novel variants and also monitor the evolution of existing variants. METHODS: SARS-CoV-2 sequences were retrieved from GISAID database. Sequence alignment was performed with MAFT version 7. Phylogenetic tree was constructed by using MEGA (version X) and UShER. RESULTS: In this study, we reported the emergence of a novel variant of SARS-CoV-2, named B.1.1.526, in India. This novel variant encompasses 129 SARS-CoV-2 strains which are characterized by the presence of 11 coexisting mutations including D614G, P681H, and V1230L in S glycoprotein. Out of these 129 sequences, 27 sequences also harbored E484K mutation in S glycoprotein. Phylogenetic analysis revealed strains of this novel variant emerged from the GR clade and formed a new cluster. Geographical distribution showed, out of 129 sequences, 126 were found in seven different states of India. Rest 3 sequences were observed in USA. Temporal analysis revealed this novel variant was first collected from Kolkata district of West Bengal, India. CONCLUSIONS: The D614G, P618H and E484K mutations have previously been reported to favor increased transmissibility, enhanced infectivity, and immune invasion, respectively. The transmembrane domain (TM) of S2 subunit anchors S glycoprotein to the virus envelope. The V1230L mutation, present within the TM domain of S glycoprotein, might strengthen the interaction of S glycoprotein with the viral envelope and increase S glycoprotein deposition to the virion, resulting in more infectious virion. Therefore, the new variant having D614G, P618H, V1230L, and E484K may have higher infectivity, transmissibility, and immune invasion characteristics, and thus need to be monitored closely.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética
3.
Infect Genet Evol ; 81: 104270, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1452334

RESUMEN

In the endemic settings of India, high CFR (3.6-7.02%) was observed in the consecutive 2009, 2015 and 2017 A/H1N1pdm09 outbreaks, though in eastern India CFR varied between 0 and 5.5% during same period. Recurrent outbreaks of pandemic Influenza A/H1N1pdm09, fragmented nationwide incidence data, lack of national policy for Influenza vaccination in India underscores the necessity for generating regional level data. Thus, during 2017-19, 4106 referred samples from patients hospitalized with severe acute respiratory illness (SARI) in eastern India were tested for A/H1N1pdm09 infection. Among which 16.5% (n = 677/4106) were found A/H1N1pdm09 positive. Individuals <20 years and middle-aged persons (40-60 years) were most susceptible to A/H1N1pdm09 infection. The vaccine strain (A/human/California/07/2009) which was globally used before 2017, clustered in a different lineage away from the representative eastern Indian strains in the phylogenetic dendrogram. The vaccine strain (A/human/Michigan/45/2015) used in India during the study period and the WHO recommended strain (A/human/Brisbane/02/2018) for 2019-20 flu season for the northern hemisphere, clustered with the circulating isolates in the same lineage-6b. Dissimilarities in the amino acids encompassing the antigenic epitopes were seen to be highest with the vaccine strain- A/human/California/07/2009. The significant amino acid variations in the circulating strains with the current WHO recommended vaccine strain, implies the exigency of continuous pandemic A/H1N1pdm09 surveillance studies in this epidemiological setting. The absence of any Oseltamivir resistant mutation (H275Y) in the neuraminidase gene of the current isolates suggests continuing use of Tamiflu® as an antiviral therapy in suspected subjects in this region.


Asunto(s)
Variación Antigénica/genética , Variación Antigénica/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Sustitución de Aminoácidos/genética , Sustitución de Aminoácidos/inmunología , Niño , Preescolar , Farmacorresistencia Viral/genética , Femenino , Humanos , India , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Neuraminidasa/genética , Oseltamivir/uso terapéutico , Filogenia , Proteínas Virales/genética , Adulto Joven
4.
ACS Sens ; 6(10): 3753-3764, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1440461

RESUMEN

We developed a piecewise isothermal nucleic acid test (PINAT) as a platform technology for diagnosing pathogen-associated infections, empowered by an illustrative novel methodology that embeds an exclusive DNA-mediated specific probing reaction with the backbone of an isothermal reverse transcription cum amplification protocol for detecting viral RNA. In a point-of-care format, this test is executable in a unified single-step, single-chamber procedure, leading to seamless sample-to-result integration in an inexpensive, scalable, pre-programmable, and customizable portable device, with mobile-app-integrated interpretation and analytics involving minimal manually operative procedures. The test exhibited a high sensitivity and specificity of detection when assessed using 200 double-blind patient samples for detecting SARS-CoV-2 infection by the Indian Council of Medical Research (ICMR), and subsequently using 170 double-blind patient samples in a point-of-care format outside controlled laboratory settings as performed by unskilled technicians in an organized clinical trial. We also established its efficacy in detecting Influenza A infection by performing the diagnosis at the point of collection with uncompromised detection rigor. The envisaged trade-off between advanced laboratory-based molecular diagnostic procedures and the elegance of common rapid tests renders the method ideal for deployment in resource-limited settings towards catering the needs of the underserved.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Sistemas de Atención de Punto , ARN Viral/genética , SARS-CoV-2
5.
Arch Virol ; 166(3): 801-812, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1384461

RESUMEN

Accumulation of mutations within the genome is the primary driving force in viral evolution within an endemic setting. This inherent feature often leads to altered virulence, infectivity and transmissibility, and antigenic shifts to escape host immunity, which might compromise the efficacy of vaccines and antiviral drugs. Therefore, we carried out a genome-wide analysis of circulating SARS-CoV-2 strains to detect the emergence of novel co-existing mutations and trace their geographical distribution within India. Comprehensive analysis of whole genome sequences of 837 Indian SARS-CoV-2 strains revealed the occurrence of 33 different mutations, 18 of which were unique to India. Novel mutations were observed in the S glycoprotein (6/33), NSP3 (5/33), RdRp/NSP12 (4/33), NSP2 (2/33), and N (1/33). Non-synonymous mutations were found to be 3.07 times more prevalent than synonymous mutations. We classified the Indian isolates into 22 groups based on their co-existing mutations. Phylogenetic analysis revealed that the representative strains of each group were divided into various sub-clades within their respective clades, based on the presence of unique co-existing mutations. The A2a clade was found to be dominant in India (71.34%), followed by A3 (23.29%) and B (5.36%), but a heterogeneous distribution was observed among various geographical regions. The A2a clade was highly predominant in East India, Western India, and Central India, whereas the A2a and A3 clades were nearly equal in prevalence in South and North India. This study highlights the divergent evolution of SARS-CoV-2 strains and co-circulation of multiple clades in India. Monitoring of the emerging mutations will pave the way for vaccine formulation and the design of antiviral drugs.


Asunto(s)
COVID-19/virología , Variación Genética/genética , Genoma Viral/genética , SARS-CoV-2/genética , Evolución Molecular , Geografía , Humanos , India/epidemiología , Mutación/genética , Tasa de Mutación , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/aislamiento & purificación , Mutación Silenciosa/genética , Secuenciación Completa del Genoma
6.
Bioorg Chem ; 114: 105139, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1292618

RESUMEN

A series of scaffolds namely aurones, 3-indolinones, 4-quinolones and cinnamic acid-piperazine hybrids, was designed, synthesized and investigated in vitro against influenza A/H1N1pdm09 virus. Designed molecules adopted different binding mode i.e., in 430-cavity of neuraminidase, unlike sialic acid and oseltamivir in molecular docking studies. All molecules reduced the viral titer and exhibited non-cytotoxicity along with cryo-protective property towards MDCK cells. Molecules (Z)-2-(3'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2f), (Z)-2-(4'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2g) and 2-(2'-Methoxy-phenyl)-1H-quinolin-4-one (3a) were the most interesting molecules identified in this research, endowed with robust potencies showing low-nanomolar EC50 values of 4.0 nM, 6.7 nM and 4.9 nM, respectively, compared to reference competitive and non-competitive inhibitors: oseltamivir (EC50 = 12.7 nM) and quercetin (EC50 = 0.56 µM), respectively. Besides, 2f, 2g and 3a exhibited good neuraminidase inhibitory activity in sub-micromolar range (IC50 = 0.52 µM, 3.5 µM, 1.3 µM respectively). Moreover, these molecules were determined as non-competitive inhibitors similar to reference non-competitive inhibitor quercetin unlike reference competitive inhibitor oseltamivir in kinetics studies.


Asunto(s)
Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
7.
JMIR Bioinform Biotech ; 1(1): e20735, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-791479

RESUMEN

BACKGROUND: The RNA genome of the emerging novel coronavirus is rapidly mutating, and its human-to-human transmission rate is increasing. Hence, temporal dissection of their evolutionary dynamics, the nature of variations among different strains, and understanding the single nucleotide polymorphisms in the endemic settings are crucial. Delineating the heterogeneous genomic constellations of this novel virus will help us understand its complex behavior in a particular geographical region. OBJECTIVE: This is a comprehensive analysis of 95 Indian SARS-CoV-2 genome sequences available from the Global Initiative on Sharing All Influenza Data (GISAID) repository during the first 6 months of 2020 (January through June). Evolutionary dynamics, gene-specific phylogeny, and the emergence of the novel coevolving mutations in 9 structural and nonstructural genes among circulating SARS-CoV-2 strains across 12 different Indian states were analyzed. METHODS: A total of 95 SARS-CoV-2 nucleotide sequences submitted from India were downloaded from the GISAID database. Molecular Evolutionary Genetics Analysis, version X software was used to construct the 9 phylogenetic dendrograms based on nucleotide sequences of the SARS-CoV-2 genes. Analyses of the coevolving mutations were done in comparison to the prototype SARS-CoV-2 from Wuhan, China. The secondary structure of the RNA-dependent RNA polymerase/nonstructural protein NSP12 was predicted with respect to the novel A97V mutation. RESULTS: Phylogenetic analyses revealed the evolution of "genome-type clusters" and adaptive selection of "L"-type SARS-CoV-2 strains with genetic closeness to the bat severe acute respiratory syndrome-like coronaviruses. These strains were distant to pangolin or Middle East respiratory syndrome-related coronavirus strains. With regard to the novel coevolving mutations, 2 groups have been seen circulating in India at present, the "major group" (66/95, 69.4%) and the "minor group" (21/95, 22.1%) , harboring 4 and 5 coexisting mutations, respectively. The "major group" mutations fall in the A2a clade. All the minor group mutations, except 11083G>T (L37F, NSP6 gene), were unique to the Indian isolates. CONCLUSIONS: This study highlights the rapidly evolving SARS-CoV-2 virus and the cocirculation of multiple clades and subclades. This comprehensive study is a potential resource for monitoring the novel mutations in the viral genome, interpreting changes in viral pathogenesis, and designing vaccines or other therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA